An Integrative Study of Insect Adhesion: Mechanics and Wet Adhesion of Pretarsal Pads in Ants1
نویسندگان
چکیده
SYNOPSIS. Many animals that locomote by legs possess adhesive pads. Such organs are rapidly releasable and adhesive forces can be controlled during walking and running. This capacity results from the interaction of adhesive with complex mechanical systems. Here we present an integrative study of the mechanics and adhesion of smooth attachment pads (arolia) in Asian Weaver ants (Oecophylla smaragdina). Arolia can be unfolded and folded back with each step. They are extended either actively by contraction of the claw flexor muscle or passively when legs are pulled toward the body. Regulation of arolium use and surface attachment includes purely mechanical control inherent in the arrangement of the claw flexor system. Predictions derived from a ‘wet’ adhesion mechanism were tested by measuring attachment forces on a smooth surface using a centrifuge technique. Consistent with the behavior of a viscid secretion, frictional forces per unit contact area linearly increased with sliding velocity and the increment strongly decreased with temperature. We studied the nature and dimensions of the adhesive liquid film using Interference Reflection Microscopy (IRM). Analysis of ‘footprint’ droplets showed that they are hydrophobic and form low contact angles. In vivo IRM of insect pads in contact with glass, however, revealed that the adhesive liquid film not only consists of a hydrophobic fluid, but also of a volatile, hydrophilic phase. IRM allows estimation of the height of the liquid film and its viscosity. Preliminary data indicate that the adhesive secretion alone is insufficient to explain the observed friction and that rubbery deformation of the pad cuticle is involved.
منابع مشابه
An integrative study of insect adhesion: mechanics and wet adhesion of pretarsal pads in ants.
Many animals that locomote by legs possess adhesive pads. Such organs are rapidly releasable and adhesive forces can be controlled during walking and running. This capacity results from the interaction of adhesive with complex mechanical systems. Here we present an integrative study of the mechanics and adhesion of smooth attachment pads (arolia) in Asian Weaver ants (Oecophylla smaragdina). Ar...
متن کاملHumidity-enhanced wet adhesion on insect-inspired fibrillar adhesive pads
Many insect species reversibly adhere to surfaces by combining contact splitting (contact formation via fibrillar contact elements) and wet adhesion (supply of liquid secretion via pores in the insects' feet). Here, we fabricate insect-inspired fibrillar pads for wet adhesion containing continuous pore systems through which liquid is supplied to the contact interfaces. Synergistic interaction o...
متن کاملPhysical principles of fluid-mediated insect attachment - Shouldn’t insects slip?
Insects use either hairy or smooth adhesive pads to safely adhere to various kinds of surfaces. Although the two types of adhesive pads are morphologically different, they both form contact with the substrate via a thin layer of adhesive fluid. To model adhesion and friction forces generated by insect footpads often a simple "wet adhesion" model is used, in which two flat undeformable substrate...
متن کاملFoot Morphology and Substrate Adhesion in the Madagascan Hissing Cockroach, Gromphadorhina portentosa
Insects are successful terrestrial organisms able to locomote over a wide range of obstacles and substrates. This study investigated how foot morphology (tarsal structure) correlates with substrate adhesion and ecological niche in the Madagascan hissing cockroach, Gromphadorhina portentosa Schaum (Blattaria: Blaberidae). Using light and scanning electron microscopy, the morphology of the differ...
متن کاملModeling of the intermolecular Force-Induced Adhesion in Freestanding Nanostructures Made of Nano-beams
Among the intermolecular interactions, the Casimir and van der Waals forces are the most important forces that highly affect the behavior of nanostructures. This paper studies the effect of such forces on the adhesion of cantilever freestanding nanostructures. The nanostructures are made of a freestanding nano-beam which is suspended between two upper and lower conductive surfaces. The linear s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003